Control of a Magnetorheological Fluid Vibration Damping System via Feedback Linearization and Suboptimal Design
نویسندگان
چکیده
The development of control systems for a two degreeof-freedom vibration suppression system using a magnetorheological (MR) fluid damper is the subject of this paper. It is assumed that system encounters impulsive disturbance forces. The objective is to use the (MR) fluid damper for the position control and vibration suppression of the payload. The control force is generated by regulating the electric current to the damper. Two control systems, based on (i) the dynamic inversion (feedback linearization) method and (ii) the state-dependent Riccati equation (SDRE) approach, for the position control of the payload and vibration suppression are derived. The dynamic inversion method yields an asymptotically stable linear second-order position error dynamics of the payload, and accomplishes vibration suppression. The SDRE design approach provides a suboptimal control law which accomplishes asymptotic stabilization of the origin in the state space. The SDRE method considers control constraint in the design process, and uses a nonlinear quadratic performance index for minimization. Simulation results are obtained in the presence of impulsive force on the system. It is shown that in the closed-loop system, both the control systems are effective in the position regulation and vibration suppression in the system. KeywordsMagnetorheological Fluid; Damping; Vibration Suppression; Feedback Linearization; Sub-Optimal
منابع مشابه
A magnetorheological fluid damper for robust vibration control of flexible rotor-bearing systems: A comparison between sliding mode and fuzzy approaches
Squeeze Film Dampers (SFD) are commonly used for passive vibration control of rotor-bearing systems. The Magnetorheological (MR) and Electrorheological (ER) fluids in SFDs give a varying damping characteristic to the bearing that can provide active control schemes for the rotor-bearing system. A common way to model an MR bearing is implementing the Bingham plastic model. Adding this model to th...
متن کاملSeismic Mitigation of Building Frames using Magnetorheological Damper (TECHNICAL NOTE)
The present study focusses on the damping force control of shear mode magnetorheological (MR) damper for seismic mitigations. Therefore, the semi-active MR damper which can control the vibration is analyzed both experimentally and numerically. Carbonyl iron is used as the magnetic particle and Castrol Magnetec oil as carrier fluid throughout the study. MR damper is designed and fabricated, and ...
متن کاملH∞-PD Controller for Suspension Systems with MR Dampers
In this paper, we consider the implementation of a static H∞ output feedback controller to a quarter vehicle suspension system with a semi-active magnetorheological fluid (MRF) damper. Unlike most of the existing literature, all the states in the equation of motion are relative displacements and velocities between sprung, unsprung masses and road disturbance instead, in addition the input to th...
متن کاملActive control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method
Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...
متن کاملHarmonic analysis of a magnetorheological damper for vibration control
Semi-active control systems are becoming more popular because they offer both the reliability of passive systems and the versatility of active control systems without imposing heavy power demands. In particular, it has been found that magnetorheological (MR) fluids can be designed to be very effective vibration control actuators, which use MR fluids to produce controllable damping force. The ob...
متن کامل